The ICARUS T600 detector at LNGS underground laboratory

Nicola Canci
INFN-Laboratori Nazionali del Gran Sasso, Italy
on behalf of the ICARUS Collaboration

TIPP2011
2nd International Conference on Technology and Instruments in Particle Physics
Chicago, IL, June 8-14, 2011
The ICARUS Collaboration

M. Antonello, P. Aprili, N. Canci, C. Rubbia, E. Scantamburlo, E. Segreto, C. Vignoli
Laboratori Nazionali del Gran Sasso dell'INFN, Assergi (AQ), Italy

B. Baibussinov, M. BaldoCeolin, S. Centro, D. Dequal, C. Farnese, A. Fava, D. Gibin, A. Guglielmi, G. Meng, F. Pietropaolo, F. Varanini, S. Ventura
Dipartimento di Fisica e INFN, Università di Padova, Via Marzolo 8, I-35131, Padova, Italy

Dipartimento di Fisica Nucleare e Teorica e INFN, Università di Pavia, Via Bassi 6, I-27100, Pavia Italy

F. Carbonara, A. G. Cocco, G. Fiorillo
Dipartimento di Scienze Fisiche, INFN e Università Federico II, Napoli, Italy

A. Cesana, P. Sala, A. Scaramelli, M. Terrani
INFN, Sezione di Milano e Politecnico, Via Celoria 2, I-20123

B. Baibussinov, M. BaldoCeolin, S. Centro, D. Dequal, C. Farnese, A. Fava, D. Gibin, A. Guglielmi, G. Meng, F. Pietropaolo, F. Varanini, S. Ventura
Dipartimento di Fisica e INFN, Università di Padova, Via Marzolo 8, I-35131, Padova, Italy

Dipartimento di Fisica Nucleare e Teorica e INFN, Università di Pavia, Via Bassi 6, I-27100, Pavia Italy

F. Carbonara, A. G. Cocco, G. Fiorillo
Dipartimento di Scienze Fisiche, INFN e Università Federico II, Napoli, Italy

A. Cesana, P. Sala, A. Scaramelli, M. Terrani
INFN, Sezione di Milano e Politecnico, Via Celoria 2, I-20123

The Henryk Niewodniczanski, Institute of Nuclear Physics, Polish Academy of Science, Krakow, Poland

D. B. Cline, S. Otwinowski, H.-G. Wang, X. Yang
Department of Physics and Astronomy, University of California, Los Angeles, USA

A. Dermenev, S. Gninenko, M. Kirsanov
INR RAS, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia

A. Ferrari
CERN, CH1211 Geneva 23, Switzerland

T. Golan , J. Sobczyk, J. Zmuda
Institute of Theoretical Physics, Wroclaw University, Wroclaw, Poland

J. Holeczek, J. Kisiel, I. Kochanek, S. Mania
Institute of Physics, University of Silesia, 12 Bankowa st., 40-007 Katowice, Poland

J. Lagoda, T. J. Palczewski, P. Przewlocki, J. Stepianiak, R. Sulej
A. Soltan Institute for Nuclear Studies, 05-400 Swierk/Otwock, Warszawa, Poland

G. Mannocchi, L. Periale, P. Picchi,
Laboratori Nazionali di Frascati (INFN), Via Fermi 40, I-00044, Italy

P. Plonski, K. Zaremba
Institute for Radioelectronics, Warsaw Univ. of Technology Pl. Politechniki 1, 00-661 Warsaw, Poland

J. Holeczek, J. Kisiel, I. Kochanek, S. Mania
Institute of Physics, University of Silesia, 12 Bankowa st., 40-007 Katowice, Poland

J. Lagoda, T. J. Palczewski, P. Przewlocki, J. Stepianiak, R. Sulej
A. Soltan Institute for Nuclear Studies, 05-400 Swierk/Otwock, Warszawa, Poland

G. Mannocchi, L. Periale, P. Picchi,
Laboratori Nazionali di Frascati (INFN), Via Fermi 40, I-00044, Italy

P. Plonski, K. Zaremba
Institute for Radioelectronics, Warsaw Univ. of Technology Pl. Politechniki 1, 00-661 Warsaw, Poland

F. Sergiampietri
Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
A powerful detection technique

The **Liquid Argon Time Projection Chamber** [C. Rubbia: CERN-EP/77-08 (1977)]
first proposed to INFN in 1985 [ICARUS: INFN/AE-85/7] capable of providing a 3D imaging of any ionizing event ("electronic bubble chamber") with in addition:

- continuously sensitive, self triggering
- high granularity (~ 1 mm)
- excellent calorimetric properties
- particle identification (through dE/dx vs range)

Electrons from ionizing track are drifted in LAr by E_{drift}. They traverse transparent wire arrays oriented in different directions where induction signals are recorded. Finally electron charge is collected by collection plane.

Key feature: LAr purity from electro-negative molecules (O_2, H_2O, CO_2). Target: 0.1 ppb O_2 equivalent $= 3$ ms lifetime (4.5 m drift @ $E_{\text{drift}} = 500$ V/cm).
ICARUS Milestones

2. 3 ton prototype
3. 50 litres prototype 1.4 m drift chamber
4. 10 m³ industrial prototype
5. Laboratory work
6. 24 cm drift wires chamber

Pavia

2001: First T600 module

Cooperation with industry and several companies

CERN

2010 - … : Data taking with CNGS beam

LNGS Hall-B

2010 - … : Data taking with CNGS beam

TIPP2011 - N. Canci
LAr-TPC performance

- Tracking device:
 - precise event topology ($s_{x,y} \sim 1\text{mm}, s_z \sim 0.4\text{mm}$)
 - μ momentum measurement via multiple scattering: $\Delta p/p \sim 10-15\%$ depending on track length and p
 - Total energy reconstruction by charge integration

- Measurement of local energy deposition dE/dx:
 - e/γ separation (2% X_0 sampling);
 - particle ID by means of dE/dx vs range

- Good e/π^0 separation (10^{-3}) by means of dE/dx in the first part of the track after the vertex; π^0 mass measurement

RESOLUTIONS

- Low energy electrons: $\sigma(E)/E = 11\% / \sqrt{E(\text{MeV}+2}$
- Electromagnetic showers: $\sigma(E)/E = 3\% / \sqrt{E(\text{GeV})}$
- Hadron shower (pure LAr): $\sigma(E)/E \approx 30\% / \sqrt{E(\text{GeV})}$
The ICARUS T600 detector

- **Two identical modules**
 - $3.6 \times 3.9 \times 19.6 \approx 275 \text{ m}^3$ each
 - Liquid Ar active mass: $\approx 476 \text{ t}$
 - Drift length = 1.5 m
 - $HV = -75 \text{ kV}$ $E = 0.5 \text{ kV/cm}$
 - $v_{\text{drift}} = 1.55 \text{ mm/µs}$

- **4 wire chambers**:
 - 2 chambers per module
 - 3 readout wire planes per chamber, wires at 0, ±60°
 - ≈ 54000 wires, 3 mm pitch, 3 mm plane spacing

- **PMT for scintillation light**:
 - $(20+54) \text{ PMTs}, \ 8'' \ Ø$
 - VUV sensitive (128nm) with wave shifter (TPB)
ICARUS T600 in LNGS Hall B

30 m³ LAr Vessel

30 m³ LN₂ Vessel

N₂ Phase separator

N₂ liquefiers: 12 units, 48 kW total cryo-power
Continuous waveform Recording

ICARUS front-end Electronics

Liquid argon	Gas
Sense wires (4-9m, 20pF/m) | Twisted pair cables (~5m, 50pF/m)

Decoupling Boards (32 ch.)

Front-end amplifiers (32/board): 1500 e.n.c

10bit FADC 400ns sampling 1mV/ADC (~1000e-/ADC matches el. Noise)

H.V. (±300 V)

Multi-event circular buffer (8x1ms)

VME board (18/crate) 4 Multiplexers (400ns x 8ch.)

To storage
The presence of electron trapping polar impurities attenuates the electron signal as $\exp(-t_D/\tau_{\text{ele}})$.

$\tau_{\text{ele}} \sim 300 \mu s / \text{ppb} (O_2 \text{ equivalent})$.

Because of temperature (87 K) most of the contaminants freeze out spontaneously. Main residuals: O_2, H_2O, CO_2.

Recirculation/purification (100 Nm3/h) of the gas phase (\sim40 Nm3) to block the diffusion of the impurities from the hot parts of the detector and from micro-leaks on the openings (typically located on the top of the device) into the bulk liquid.

Recirculation/purification (4 m3/h) of the bulk liquid volume (\sim550 m3) to efficiently reduce the initial impurities concentration (can be switched on/off).
LAr purity measurement with muon crossing tracks

Charge attenuation along track allows event-by-event measurement of LAr purity.

T = 0 estimated by induction of PMT signal on Collection view.

Wire 3695

Pulse height for 3 mm m.i.p.
~ 15 ADC # (15000 electrons)

Noise r.m.s.
~ 1.5 ADC # (1500 electrons)
LAr purity time evolution

Simple model: uniform distribution of the impurities, including internal degassing, decreasing in time, constant external leak and liquid purification by recirculation.

\[\frac{dN}{dt} = -\frac{N}{\tau_R} + k_I + k_D \exp\left(-\frac{t}{\tau_D}\right) \]

- \(\tau_R \): recirculation time for a full detector volume
- \(k_D \) and \(\tau_D \): related to the total degassing internal rate
- \(k_I \): totally impurity leak rate and degassing rate

\(\tau_R \): 2 m³/h per half module corresponding to \(\approx 6 \) day cycle time

\(\tau_{ele} \) [ms] = \(\frac{0.3}{N[\text{ppb } \text{O}_2 \text{ equivalent}]} \)
ICARUS T600: major milestone towards realization of large scale LAr detector. Interesting physics in itself: unique imaging capability, spatial/calorimetric resolutions and e/π^0 separation → events “seen in a new Bubble chamber like” way.

CNGS ν events collection (beam intensity 4.5×10^{19} pot/year, $E_\nu \sim 17.4$ GeV):
- 1200 ν_μ CC event/year;
- ~ 8 ν_e CC event/year;
- observation of ν_τ events in the electron channel, using kinematical criteria;
- search for sterile ν in LSND parameter space (deep inelastic ν_e CC events excess).

“Self triggered” events collection:
- ~ 80 events/y of unbiased atmospheric ν CC;
- zero background proton decay with 3×10^{32} nucleons for “exotic” channels.
Preliminary results of first CNGS 2010 run

- ICARUS fully operational for CNGS events recording in Oct. 1st - Nov. 22nd.
- Trigger: photomultiplier signal for each chamber with low threshold discrimination at 100 phe, within 60 μs wide beam gate.

Oct. 1st ÷ Nov. 22nd: 8 \cdot 10^{18} (5.8 \cdot 10^{18}) pot delivered (collected). Detector lifetime up to 90% since Nov. 1st.

Number of collected interactions compared with number of interactions predicted ((2.6 v CC + 0.86 v NC) 10^{-17}/pot), in the whole energy range up to 100 GeV, corrected by fiducial volume (424 t) and DAQ dead-time.

5.3 \cdot 10^{18} pot = 91 % out of whole sample

<table>
<thead>
<tr>
<th>Event type</th>
<th>Collected</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν\textsubscript{μ} CC</td>
<td>108</td>
<td>115</td>
</tr>
<tr>
<td>νNC</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>νXC *</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>152</td>
</tr>
</tbody>
</table>

- Events at edges, with μ track too short to be visually recognized: further analysis needed.

On overall statistics in agreement with expectations.
CNGS neutrino interactions in ICARUS T600

Collection view

Wire coordinate (8 m)

Drift time coordinate (1.4 m)

CNGS ν beam direction

ν_{μ} CC
Low energy CNGS neutrino interaction

Electron lifetime and quenching accounted for

Collection views (not to scale!)

Evis ~ 9 GeV

CNGS beam

Left wire chamber

0.5 m

Electron drift (1.5 m)

Cathode (18 m)

Right wire chamber

Electron drift (1.5 m)

1.8 m
CNGS NC interaction

Wire coordinate (2.2 m)

Drift t coordinate (1.5 m)

CNGS ν beam direction
3D reconstruction and (nn) particle identification

- Complement of 2D reconstruction based on Polygonal Line Algorithm (PLA).

 http://www.iro.umontreal.ca/~kegl/research/pcurves/

- 3D reconstruction: linking hit projections between views according to
 - drift sampling;
 - sequence of hits.

- Particle identification based on:
 - distance between nearby 3D hits: \(dx\)
 - 3D hits and charge deposition: \(dE/dx\)

- Classify single \(i^{th}\) point on the track
 \[p_i : [E_k, dE/dx] \rightarrow nn_i : [P(p), P(K), P(p), P(\mu)] \]

- Average \(M\) output vectors for the points
 \[NN = S(nn_i)/M \]

- Identify track as particle corresponding to \(\text{max}(NN)\)
 very high identification efficiency for \(p, K, \pi^+, \mu\)

- Energy reconstructed including quenching in simulation
Primary vertex (A)
very long \(\mu \) (1),
e.m. cascade(2),
pion (3).

Secondary vertex (B)
The longest track (5) is a \(\mu \) coming from stopping k (6).
- \(\mu \) decay is observed.

\[p_\mu = 10.5 \pm 1.1 \text{ GeV/c by multiple scattering} \]

\[E_{\text{dep}} = [\text{MeV}] \]

<table>
<thead>
<tr>
<th>Track</th>
<th>(E_{\text{dep}}) [MeV]</th>
<th>(\cos x)</th>
<th>(\cos y)</th>
<th>(\cos z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ((\mu))</td>
<td>2701.97</td>
<td>0.069</td>
<td>-0.040</td>
<td>-0.997</td>
</tr>
<tr>
<td>2 ((\pi^0))</td>
<td>520.82</td>
<td>0.054</td>
<td>-0.420</td>
<td>-0.906</td>
</tr>
<tr>
<td>3 ((\pi))</td>
<td>514.04</td>
<td>-0.001</td>
<td>0.137</td>
<td>-0.991</td>
</tr>
<tr>
<td>Sec. vtx.</td>
<td>797.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>76.99</td>
<td>0.009</td>
<td>-0.649</td>
<td>0.761</td>
</tr>
<tr>
<td>5 ((\mu))</td>
<td>313.9</td>
<td>0.009</td>
<td>-0.649</td>
<td>0.761</td>
</tr>
<tr>
<td>6 (K)</td>
<td>86.98</td>
<td>0.000</td>
<td>-0.239</td>
<td>-0.971</td>
</tr>
<tr>
<td>7</td>
<td>35.87</td>
<td>0.414</td>
<td>0.793</td>
<td>0.446</td>
</tr>
<tr>
<td>8</td>
<td>283.28</td>
<td>-0.613</td>
<td>0.150</td>
<td>-0.776</td>
</tr>
</tbody>
</table>

LAr-TPC: powerful technique. Run 9927 Event 572

Close-up of two e.m. showers

Primary vertex (A)
very long \(\mu \) (1),
e.m. cascade(2),
pion (3).

Secondary vertex (B)
The longest track (5) is a \(\mu \) coming from stopping k (6).
- \(\mu \) decay is observed.

Track
- 1 (\(\mu \))
- 2 (\(\pi^0 \))
- 3 (\(\pi \))
- Sec. vtx.
- 4
- 5 (\(\mu \))
- 6 (K)
- 7
- 8

Conversion distances
6.9 cm, 2.3 cm

Total visible energy 4.5 GeV

\(p_\mu \) = 10.5 \pm 1.1 \text{ GeV/c by multiple scattering} \)

\(M_{\gamma\gamma}^* = 125 \pm 15 \text{ MeV/c}^2 \)

Run 9927 Event 572

Total visible energy 4.5 GeV

\(p_\mu \) = 10.5 \pm 1.1 \text{ GeV/c by multiple scattering} \)
Atmospheric ν candidate

- Total visible energy: 887 MeV (including quenching and e⁻ lifetime corrections).
- Out-of-time from CNGS spill AND angle w.r.t. beam direction: 35°.
2011-2012 CNGS run: physics perspectives

- 2011-2012 run with dedicated SPS periods @ high intensity: expected 10^{20} pot.
- For 1.1×10^{20} pot: 3000 beam related ν_μ CC events expected in ICARUS-T600.

- $\tau \rightarrow e\nu\nu$ events characterized by momentum unbalance (because of 2ν emission) and relatively low electron momentum. Selection criteria suggest a sufficiently clean separation with kinematic cuts and efficiency ~ 50%, allowing to detect 1-2 ν_τ CNGS events expected in ICARUS T600 in next 2 years.

- At the effective neutrino energy of 20 GeV and $\Delta m^2 = 2.5 \times 10^{-3} \text{eV}^2$, $P(\nu_\mu \rightarrow \nu_\tau) = 1.4\%$.
- 17 raw CNGS beam-related ν_τ CC events expected.
- $P(\tau \rightarrow e\nu\nu) = 18\% \Rightarrow 3$ electron deep inelastic events with visible energy < 20 GeV.
Conclusions

Cryogenic noble liquids and Argon in particular have recently regained a strong interest in the scientific community.

The ICARUS experiment at the Gran Sasso Laboratory is so far the most important milestone for this technology and acts as a full-scale test-bed located in a difficult underground environment.

- The successful assembly and operation of the ICARUS-T600 LAr-TPC demonstrate that the technology is mature.

- The wide physics potentials offered by high granularity imaging and extremely high resolution will be addressed already with the T600 detector:
 - Underground physics (proton decay, atmospheric ν, supernova, ...)
 - Long-baseline neutrino oscillation physics

- The T600 is presently taking data, recording cosmic and CNGS neutrino events in stable conditions since October 2010. Data analysis is on-going.

- The detector is ready for the 2011-2012 CNGS high intensity exposure.
Sterile neutrino search with ICARUS T600

- Sensitivity region, in terms of standard deviations, for 3000 raw CNGS muon neutrino events.
- The potential signal is above the background generated by the intrinsic ν_e beam contamination, in the deep inelastic interval 10-30 GeV.
- Largely complementary to the Fermi-lab program in terms of energy and baseline.

$\nu_\mu \rightarrow \nu_e$ appearance search in T600 in LNSD parameter space
CNGS run during 2010

- ICARUS fully operational for CNGS events recording in Oct. 1st – Nov. 22nd.
- At every CNGS cycle 2 spills lasting 10.5 µs each, 50 ms apart; ppp = 2.1 \times 10^{13}.
- CNGS “Early Warning” signal sent 80 ms before the proton spill extraction, containing information on the time foreseen for the next extraction.
- Trigger: photomultiplier signal for each chamber with low threshold discrimination at 100 phe, within 60 µs wide beam gate.

Oct. 1st – Nov. 22nd: 8 \times 10^{18} (5.8 \times 10^{18}) pot delivered (collected). Detector lifetime up to 90% since Nov. 1st.
A CNGS ν_μ interaction with time coincidence

Wire coordinate (~4 m)

Collection view

Drift time coordinate (1.4 m)

Induction 1 (Front view)

CNGS ν beam direction

CNGS abs. extr. time: 2010-06-20 23:41:10:935

T600 LNGS mean time: 2010-06-20 23:41:11