ICARUS and status of Liquid Argon Technology

Dorota Stefan
On behalf of ICARUS Collaboration

- The ICARUS detector.
- Event reconstruction.
- Preliminary results from data taken during run 2010.
- Physics perspectives.
- Summary.
The detection technique

- The Liquid Argon Time Projection Chamber [C. Rubbia: CERN-EP/77-08 (1977)] first proposed to INFN in 1985 [ICARUS: INFN/AE-85/7] capable of providing a 3D imaging of any ionizing event (electronic bubble chamber) with in addition:
 - continuously sensitive, self triggering;
 - high granularity (spatial resolution of the detector ~ 1 mm);
 - excellent calorimetric properties.

Electrons from ionizing track are drifted in LAr by uniform electric field. They traverse transparent wire arrays oriented in different directions where induction signals are recorded. Finally electron charge is collected by collection plane.

Key feature: LAr purity. Impurities form electro-negative molecules (O_2, H_2O, CO_2).

Target: 0.1 ppb O_2 equivalent $= 3$ms lifetime (4.5 m drift @ $E_{drift} = 500$ V/cm).
Two identical T300 modules (2 TPC chambers for each module).

LAr active mass 476 t:
- $(17.9 \times 3.1 \times 1.5$ for each TPC) m^3;
- drift length $= 1.5$ m;
- $E_{\text{drift}} = 0.5$ kV/cm; $v_{\text{drift}} = 1.6$ mm/μs.

3 readout wire planes/chamber at 0°, $+60^\circ$, 3 mm plane spacing:
- ≈ 53000 wires, 3 mm pitch;
- two induction planes, 1 collection.

PMT for scintillation light (128 nm):
- $(20+54)$ PMTs.

The ICARUS is collecting events of the CNGS neutrino beam from CERN to Gran Sasso.
Electronegative impurities (mainly O_2, H_2O) can attenuate e^- signal: high purity is crucial!

Simple model: uniform distribution of the impurities, including internal degassing, decreasing in time, constant external leak and liquid purification by recirculation.

$\tau_{ele}[\text{ms}] = 0.3 / N[\text{ppb } O_2 \text{ equivalent}]$

Currently: $\tau_{ele} > 6 [\text{ms}]: \sim 50 \text{ ppt}$

τ_R: recirculation time for a full detector volume

k_I and τ_I: related to the total degassing internal rate

k: related to the external leaks

$$dN/dt = -N/\tau_R + k + k_I \exp(-t/\tau_I)$$

τ_R: $2 \text{ m}^3/\text{h}$ (per cryostat) corresponding to ~ 6 day cycle time
At every CNGS cycle protons are extracted in 2 spills lasting 10.5 μs each, 50 ms apart. CNGS "Early Warning" signal sent 80 ms before the proton extraction with the expected absolute time for next extraction.

- Trigger: photomultiplier signal for each chamber with low threshold discrimination at 100 phe, within 60 μs wide beam gate.

- 80 events per day are recorded with a trigger rate of about 1 mHz.

Offset value (2.40 ms) in agreement with ν t.o.f. (2.44 ms) with the addition of 40 μs fiber transit time from external LNGS lab absolute clock to Hall B (8 km).
CNGS CC ν interaction with both TPC signal

Wire coordinate (~5 m)

Collection right view

Wire coordinate ~ 5 m

Electron drift 1.5 m

Collection left view

CNGS ν beam direction
Muon from ν beam interaction in the rock

Drift t coordinate (0.6 m)

Wire coordinate (6.9 m)

Collection view

CNGS ν beam direction

Induction 1 view

CNGS ν beam direction

Predicted number of collected interactions in the rock: 7.8×10^{-17}/pot
The total deposited energy ~ 1 GeV
CNGS NC ν interaction candidate

Wire coordinate ~ 3 m

CNGS ν beam direction

Drift coordinate ~ 1.5 m
ICARUS LAr TPC performances

CASCADEnES:
- The total energy of cascades is measured by charge integration with recombination correction.

\[\text{Very good } e/\pi^0 \text{ separation by means of } \frac{dE}{dx} \text{ in the first part of the cascade.} \]

\[\nu_{\mu} \text{ NC background rejected at 0.1\% level while keeping 90\% of } \nu_e \text{ CC} \]

ENERGY RESOLUTIONS:
- Low energy electrons \(\sigma(E)/E = 11\% / \sqrt{E} (\text{MeV}) + 2\% \)
- Electromagnetic showers \(\sigma(E)/E = 3\% / \sqrt{E} (\text{GeV}) \)
- Hadron shower (pure LAr) \(\sigma(E)/E \sim 30\% / \sqrt{E} (\text{GeV}) \)

TRACKS:
- Momentum of escaping muons is measured via multiple scattering: \(\Delta p/p \sim 10-15\% \) depending on track length and \(p \).
- Stopping particles energy is measured by charge integration with recombination correction
- Stopping particle identification by means of \(\frac{dE}{dx} \) vs \(E \).
1. Hit finding: wire ADC pulse position (drift time) and charge reconstruction (in collection).

2. Forming 2D objects (tracks, cascades) from hits.

3. 3D reconstruction: combining 2D objects in different views.
Particle identification is based on:
- \(\frac{dE}{dx} = f(E) \) dependency
- reconstructed 3D track segments: \(dx \)
- charge deposition on the track segment: \(dE \)

Classify single \(i^{th} \) segment of the track

\[
\mathbf{p}_i : [E, \frac{dE}{dx}] \rightarrow \mathbf{nn}_i : [P(p), P(K), P(\pi), P(\mu), P(other)]
\]

neural network output vector

Average \(k \) output vectors for the track segments

\[
\mathbf{NN} = \frac{\sum_{i=1}^{M} (\mathbf{nn}_i)}{k}
\]

Identify track as a particle corresponding to \(\max(\mathbf{NN}) \)

NN training patterns based on MC tracks:
- with quenching simulation
- simulated with full angular distribution
- reconstructed with the same algorithms as prepared for real data

Efficiency > 85% for kinetic energy around 30 MeV and higher
Examples of stopping particles in the ν_μ CC CNGS events

Run 9809 Event 651

Stopping particle identification

<table>
<thead>
<tr>
<th>Track</th>
<th>E_{dep} [MeV]</th>
<th>range [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(p)</td>
<td>185±16</td>
<td>15</td>
</tr>
<tr>
<td>5(p)</td>
<td>192±16</td>
<td>20</td>
</tr>
<tr>
<td>7(p)</td>
<td>142±12</td>
<td>17</td>
</tr>
<tr>
<td>8(\pi)</td>
<td>94±8</td>
<td>12</td>
</tr>
<tr>
<td>9(p)</td>
<td>26±2</td>
<td>4</td>
</tr>
<tr>
<td>10(p)</td>
<td>141±12</td>
<td>23</td>
</tr>
<tr>
<td>11(p)</td>
<td>123±10</td>
<td>6</td>
</tr>
</tbody>
</table>

6 protons and 1 pion which decays at rest muon: 7.1 ± 1.3 [GeV/c]
Examples of stopping particles in the ν_μ CC CNGS events

Run 9808 Event 250

Stopping particle identification

- 4 protons

<table>
<thead>
<tr>
<th>Track</th>
<th>E_{dep} [MeV]</th>
<th>Range [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(p)</td>
<td>89 ± 8</td>
<td>9</td>
</tr>
<tr>
<td>2(p)</td>
<td>99 ± 8</td>
<td>16</td>
</tr>
<tr>
<td>3,4 merged (p)</td>
<td>233 ± 20</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track</th>
<th>p [MeV/c]</th>
<th>$\cos x$</th>
<th>$\cos y$</th>
<th>$\cos z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>428 ± 5</td>
<td>0.861</td>
<td>0.508</td>
<td>-0.019</td>
</tr>
<tr>
<td>2</td>
<td>436 ± 9</td>
<td>0.186</td>
<td>-0.942</td>
<td>0.279</td>
</tr>
<tr>
<td>3,4</td>
<td>542 ± 23</td>
<td>-0.319</td>
<td>-0.034</td>
<td>-0.947</td>
</tr>
</tbody>
</table>

Examples of stopping particles in the ν_μ CC CNGS events
Example of fully reconstructed CNGS neutrino interaction

ALL PARTICLES RECONSTRUCTED IN 3D + DEPOSITED ENERGY MEASUREMENT

Primary vertex:
• Long muon – not contained (1) – 10.5 GeV/c from MS.
• EM cascade (2), identified as π^0.
• Charge pion (3).

Secondary vertex:
The longest track (5) is a muon coming from stopping K (6) - muon decay is observed.

The conversion distances are:
6.9 cm, 2.3 cm.

Total transverse momentum \sim 250 MeV (consistent with Fermi momentum)

$M^{*}\gamma \gamma = 125\pm15$ MeV/c^2

2.2 m.i.p.
ICARUS fully operational for CNGS events since October 1st 2010.

5.9 \times 10^{18} \text{ pot collected in 2010; Number of } \nu \text{ interactions agrees with expectations.}

<table>
<thead>
<tr>
<th>EVENT TYPE</th>
<th>COLLECTED</th>
<th>EXPECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_\mu \text{ CC}$</td>
<td>114</td>
<td>129</td>
</tr>
<tr>
<td>$\nu_\mu \text{ NC}$</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>$\nu \text{ XC (further analysis needed)}$</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
<td>171</td>
</tr>
</tbody>
</table>
\(\nu_e \) event candidate

- Total deposited energy 45 GeV.
- Single high energy EM shower (37 GeV) measured by charge integration, partially overlapped to hadronic jet.
Preliminary results of CNGS 2010 CC ν interactions

Measurement of muon momentum from multiple scattering

Calorimetric measurement of the deposited energy

ρ_μ [GeV] \quad E_{dep} [GeV]
Preliminary results of first CNGS 2010 run
Reconstruction of muon from ν interaction in the rock

Reconstruction of muon direction (from $\text{rock} \, \mu$)
Agrees with expectations (allowing for Earth curvature)
$\theta = 86.7^\circ, \varphi = 0^\circ$

Count distribution for polar angle w.r.t. CNGS beam:
- **DATA**
- **SIMULATION**
Beam restarted on March 19th.

2.8 x 10^{19} (2.5 x 10^{19}) pot delivered (collected) up to July 14th.

Detector live-time improved (~93%) due to more stable running conditions.

Trigger: photomultiplier signal summed for each chamber (100 phe threshold), within 60 μs beam gate.
ICARUS T600 physics potential

- CNGS ν events collection (beam intensity 4.5×10^{19} pot/year, $E_n \sim 17.4$ GeV):
 - 1200 ν_μ CC event/year;
 - \sim 8 ν_e CC event/year;
 - observation of ν_τ events using kinematical criteria for selection of τ decay in the electron channel;
 - search for sterile ν in LSND parameter space (deep inelastic ν_e CC events excess).

- Self triggered events collection:
 - \sim80 events/year of unbiased atmospheric ν CC;
 - practically zero background proton decay with 3×10^{32} nucleons for exotic channels.
ICARUS T600 @ LNGS is taking data with CNGS beam since October 2010.

The successful assembly and operation of the LAr-TPC is the experimental proof that this technique is well-suited for large scale experiments.

The unique imaging capability of ICARUS, its spatial/calorimetric resolutions, allow to reconstruct and identify events in a new way w.r.t previous/current experiments.

The 2011-2012 run with CNGS ν_μ beam will allow to possibly detect few ν_τ appearance events. Interesting physics perspectives also for solar and atmospheric neutrinos, sterile neutrino and proton decay.

The ICARUS experiment at the Gran Sasso Laboratory is so far the major milestone towards the realization of a much more massive LAr detector.

THANK YOU!
Sterile neutrino search with ICARUS T600

- Sensitivity region, in terms of standard deviations, for 3000 raw CNGS muon neutrino events.

- The potential signal is above the background generated by the intrinsic ν_e beam contamination, in the deep inelastic interval 10^{-30} GeV.

- Largely complementary to the Fermi-lab program in terms of energy and baseline.
2011-2012 CNGS run: physics perspectives

- 2011-2012 run with dedicated SPS periods @ high intensity: expected 10^{20} pot.

- For 1.1×10^{20} pot: 3000 beam related ν_μ CC events expected in ICARUS-T600.

- At the effective neutrino energy of 20 GeV and $\Delta m^2 = 2.5 \times 10^{-3}$ eV2, $P(\nu_\mu \rightarrow \nu_\tau) = 1.4\%$

- 17 raw CNGS beam-related ν_τ CC events expected

- $P(\tau \rightarrow e\nu\nu) = 18\% \Rightarrow 3$ electron deep inelastic events with visible energy < 20 GeV.

- Currently collected CC/NC data will be used to tune the selection criteria in order to optimize the sensitivity for τ search.

$\tau \rightarrow e\nu\nu$ events characterized by momentum unbalance (2ν emission) and relatively low electron momentum. Selection criteria suggest a sufficiently clean separation with kinematic cuts opening the possibility to identify 1-2 ν_τ CNGS events in the next 2 years, only in this gold channel.
With 1.2×10^{34} nucleons, MODULAr is well suited for channels not accessible to Cherenkov detectors due to the complicated event topology, or if the emitted particles are below the Cherenkov (e.g., K^+).

$$p \rightarrow \nu \pi^+$$
$$p \rightarrow \mu^- \pi^+ K^+$$

90% CL - 5y:
- 1.1×10^{32}
- 2.7×10^{32}

(pdg 90% CL):
- 2.5×10^{31}
- 2.5×10^{32}
$K^+ \rightarrow \mu^+ \nu_\mu$
Polygonal 3D Line Algorithm

Initialization

- First PC segment (Principal Component)

Projection

Vertex Optimization

- Add vertex v_i

Convergence?

- $k/n > c$?

 - **N**

 - **Y**

Segment Number k to Hits Number n Exceeds Given Ratio c, where c Depends on Track Hits Number.

- $G(v_i) = \frac{1}{n} \Delta_n(v_i) + \frac{\lambda}{k+1} P(v_i)$

 - **local** squared distance to hits
 - **local** angle penalty term

- **http://www.iro.umontreal.ca/~kegl/research/pcurves/**
3D track reconstruction

- Associating the track’s hits in each 2D view.

- Track fitting with Polygonal Line Algorithm (PLA):
 - hits sorted along the track;
 - hit projections to the track fit;
 - available for 3D matching;

- 3D: matching hit projections from two 2D views:
 - matching hits with corresponding drift time – may be ambiguous, therefore:
 - using order of hits sorted with PLA and hit-to-hit 3D distance criteria;
 - Supplement 3D track with unmatched Collection hits.
500 tracks per species (proton, kaon, pion, muon).

- Full angular distribution.
- Tracks simulated with kinetic energy: 100 MeV.
- Identification performed with varying range from the track end (corresponding to different deposited energy E_{dep}).
- Purity / Efficiency dependance on used sample shown with error bars.

<table>
<thead>
<tr>
<th>Results for max E_{dep} = 60 MeV:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC \ PID</td>
</tr>
<tr>
<td>proton:</td>
</tr>
<tr>
<td>kaon:</td>
</tr>
<tr>
<td>pion:</td>
</tr>
<tr>
<td>muon:</td>
</tr>
</tbody>
</table>